
Trajectory Planning for Underwater Gliders

Logan Williams

May 24, 2012

1 Abstract

The “underwater glider” is a highly useful un-

deractuated robotic system. In this project, we

analyze a two dimensional “planar underwater

glider,” with just one degree of actuation. By us-

ing rapidly exploring random trees, we are able

to find feasible trajectories from one physical lo-

cation to another. We then apply non-linear op-

timization techniques to the feasible trajectory

to find efficient, low-power routes through the

sea.

2 The Planar Underwater

Glider Model

2.1 System motivation

The “underwater glider” is a very useful au-

tonomous robot for oceanographic research, due

to its ability to travel distance with minimal

power consumption. The robot itself consists

of a narrow, hydrodynamic body, with two long

wings, as pictured in Figure 1. By inflating

or deflating an oil bladder in the glider, the

buoyancy of the robot can be adjusted. These

small changes in buoyancy create vertical mo-

tion, which is converted to horizontal motion by

the wings. This provides an extremely efficient,

low power way to travel through the ocean, us-

ing long, triangle shaped trajectories. Due to

the highly underactuated nature of these robots,

finding trajectories from one position to another

is a non-trivial task. In this project we were mo-

tivated to see if the techniques taught in 6.832

could be effectively applied to this system.

While there is significant prior work in devel-

oping models of the dynamics of these gliders [1],

we found the three-dimensional models to be too

complicated for the scope of this project, and in-

stead chose to create our own planar model, with

the same fundamental features and limitations as

the three dimensional glider.

Figure 1: A SLOCUM underwater glider.

1

2.2 The planar model

The system analyzed in this project was a pla-

nar (two dimensional) model of the three di-

mensional underwater glider. In addition to the

conversion to two dimensions, there were several

other simplifications. The mass of the glider is

modeled as two point masses of neutral buoy-

ancy, one at the front of the glider and one at

the rear, separated by a distance 2l. To model

the changes in buoyancy caused by the bladder,

we allow the forward point mass to be adjusted

by a control input, letting the nose of the glider

become positively or negatively buoyant. This

buoyancy will cause an overall force on the glider,

as well as torque around the center of mass, as

shown in the free body diagram below. To fur-

ther simplify the model, we make the assumption

that the changes in the mass of the forward mass

are of small enough order that the center of mass

of the glider is fixed.

Figure 2: A free body diagram of the hull of the
planar glider.

Forward forces are caused by the wing at the

center of the glider, shown here as a thick line.

We model this force by assuming elastic collisions

with the water incident on the wing – an obvi-

ously incorrect assumption, but one that leads

to a very reasonable model. As shown in the

second free body diagram below, if the glider is

moving along some velocity vector v, there will

be a force, normal to the angle θ of the glider

(and wing), proportional to the sine of the angle

of incidence of the water, α = 6 v − θ.

Figure 3: A free body diagram of the wing of the
planar glider.

From these forces, we can derive the following

system dynamics equations:

ẍ =
c sinα sin θ|v|−bxẋ

2m+mb
(1)

z̈ =
−mbg + c sinα cos θ|v|−bzẋ

2m+mb
(2)

θ̈ =
−lmbg cos θ − br θ̇

(2m+mb)l2
(3)

ṁb = u (4)

The system has a seven dimensional state vec-

tor, x = [x, z, θ, ẋ, ż, θ̇,mb]
T .

2

3 Methods

We found trajectory optimization alone to be

incapable of finding satisfactory trajectories in

most cases where the route did not already

lie near the “natural trajectories” of the sys-

tem. (For example, while trajectory optimiza-

tion alone could find a solution along a diagonal

line through x and z, it would fail to find a so-

lution to travel horizontally along x.) We used

a rapidly exploring random tree (RRT) to find

a nominal trajectory to use as an initial control

tape for the trajectory optimization.

3.1 RRT

The RRT used to find the nominal trajectory had

several modifications from the basic RRT algo-

rithm that proved necessary to make the RRT

work effectively.

The first, and most important of these was the

use of two trees, a “feasible” tree and a “reach-

able” tree, instead of just one. When a new point

is added to the tree, it is added to both the fea-

sible and the reachable tree. However, we then

add two more points to the reachable tree, sim-

ulating the system forward for a brief period of

time (the same period of time as is used by the

extend operation) with minimum and maximum

control input applied. When a sample is picked,

its distance is compared to all of the nodes on

the reachability tree. If the closest node only ex-

ists in the reachability tree, that point is used,

and an extend operation is performed. However,

if the node also exists on the feasible tree, that

sample is discarded and a new target sample is

picked.

With the basic RRT algorithm, it failed

Figure 4: An example RRT figure. The “feasible
nodes” have blue paths, the “reachable nodes”
have yellow paths, and the red path highlights
the solution.

to find a path from [0, 0, 0, 0, 0, 0, 0]T to

[−4, 0, ∗, ∗, ∗, ∗, ∗]T within 300 seconds 6/10

times. When it did find a path, it took 230±102

seconds to find. After modifying the RRT to use

a reachable tree, the failure rate dropped to just

3/10, with an average time to solution of 111±72.

Other modifications to the RRT also helped

improve its ability to find feasible trajectories.

Of significant importance were the way that the

state space was sampled, and the distance metric

used to find the closest existing node to a ran-

dom sample. Rather than sampling uniformly

in all seven state variables, the RRT algorithm

that we used sampled randomly only from x and

z, without regard for velocities or angles. Fur-

thermore, the distance metric that was used for

finding the closest point in the tree, and for eval-

uating the success of the extend only used the

Euclidean distance in x and z.

While this worked acceptably, it was noticed

that there were often cases where, due to the rel-

atively uncontrollable system dynamics while in

motion, that the glider would “graze” the target

point, without actually reaching it. Once this

3

Figure 5: An example of the amount of control
authority that is available while the glider is in
motion. The three yellow lines shows the effect
of applying maximum control input, no control
input, or minimum control input.

happened, when the final destination was picked

as the “random” sample, the closest point to it

might be a nearby, but completely inaccessible,

point on the feasible tree, causing the destina-

tion to be discarded. To prevent this problem,

we also added to the distance metric a compari-

son of θ with the angle from the glider’s current

location to the sample point. It was also found

that weighting the θ distance slightly more than

the x and z distances was helpful. The final dis-

tance metric used was as follows, where xxz rep-

resents the [x, z]T vector of the glider, and sxz

represents the [x, z]T vector of the sample point.

D= (4(6 (xxz−sxz))2+(xx−sx)2+(xz−sz)2)1/2

With the modified RRT described above, it

failed to find a path within 300 seconds 2/10

times. When a path was found, it took 82 ± 81

seconds to find a solution.

Figure 6: A graph showing the speed improve-
ments made to the RRT algorithm for the un-
derwater glider.

3.2 Trajectory optimization

Initially, we intended to use the “direct method”

of trajectory optimization with this system, as

the output of the RRT trajectory search contains

full x information along the entire nominal tra-

jectory. In this method, the variables to optimize

include x and u at every time step of the sys-

tem, with the system dynamics applied as con-

straint equations on the optimization. However,

the non-linear optimizer that we used, SNOPT,

had significant numerical difficulties with this

approach, for reasons that are still unknown.

Instead, we applied the “shooting method” of

trajectory optimization and were able to achieve

reasonable solutions. In this method, rather

than applying the system dynamics as constraint

equations on the non-linear optimization, the

only variables to be optimized are the control

tape. Gradients on the final condition constraint

are computed by simulating the system forward

and accumulating the gradients of the control

4

tape along the way.

The initial formulation of the problem was to

(5)min
u(·)

N∑
i =0

Ru(i)2

subject to the following constraints:

xg(N)− 0.2 < x(N) < xg(N) + 0.2 (6)

zg(N)− 0.2 < z(N) < zg(N) + 0.2 (7)

with the gradients of the cost function and of

the constraint computed numerically in MAT-

LAB in the following way,

(8)
dx(i+ 1)

dh
=
dx(i)

dh
+
dfdyn(i)

dh

(9)
dx(i+ 1)

dug(·)
=

dx(i)

dug(·)
+
dfdyn(i)

dx

dx(i)

dug(·)

In these equations, fdyn represents the vector

of the dynamics equations, shown below. (With

the usual x = [x, z, θ, ẋ, ż, θ̇,mb]
T). The velocity

vector, v is equal to [x(4),x(5)]T = [ẋ, ż]T . The

generalized ug = [h,uT]T .

fdyn

=

hx(4)

hx(5)

hx(6)

h c sin (6 v−x(3)) sin (x(3))||v||−bxx(4)
2m+x(7)

h−x(7)g+c sin (6 v−x(3)) cos (x(3))||v||−bzx(5)
2m+x(7)

h−lx(7)g cosx(3)−brx(6)
(2m+x(7))l2

hu(i)

(10)

Initial results of this are shown in the figure

below. This method worked well when the path

that was being optimized already lay along the

natural trajectories of the system, as in this ex-

ample. Note however that even in this case it

still had difficulties finding an optimal trajectory

that satisfied the final conditions by landing in-

side the box.

Figure 7: Initial results from the “shooting
method” of trajectory optimization.

To further improve trajectory optimization,

we removed the constraint equations on the fi-

nal condition, and instead incorporated the final

condition into the cost function that was to be

minimized. This cost function is shown below.

F = Q((x(N)− xg(N))2 + (z(N)− zg(N))2)

+

N∑
i=0

Ru(i)2

It was determined through experimentation

that a R/Q ratio of 4 worked well. While this

may seem to be under-emphasizing the impor-

tance of the final condition, in actuality it did

not, as the control values are of order � 1, so

u(i)2 is very small.

Results achieved with this cost function were

far superior to attempting to apply the final po-

sition as a constraint. An example of this is

5

shown in the next figure. In blue is the feasi-

ble path found by the RRT, and in black is the

optimized trajectory. To compare the “power

consumption” of each of these trajectories, we

use the original cost function in Equation 5. The

original trajectory had a cost of 15.6, while the

optimized trajectory had a cost of 2.278, a sig-

nificant reduction.

Figure 8: Successful optimization of a trajectory
from [0, 0, 0, 0, 0, 0, 0]T to [−4, 0, ∗, ∗, ∗, ∗, ∗]T , us-
ing the “shooting” method. The cost of the con-
trol tape has been reduced by a factor of 7.

4 Conclusions

The system proved generally effective at finding

and optimizing trajectories for the planar glider

system. The RRT was capable of finding feasi-

ble trajectories to “nearby” points in space, even

when they did not lie along the natural dynam-

ics of the system. Compiling the MATLAB pro-

gram to C or something similar, as suggested by

another 6.832 group, would improve the speed

of the RRT search, and make finding feasible

trajectories to more distant locations easier, but

proved unnecessary for the scope of this project.

Once a feasible trajectory was found by the

RRT, the “shooting method” of trajectory opti-

mization proved capable of optimizing the trajec-

tory, moving the final location closer to the tar-

get destination, while also reducing the amount

of actuator power required.

Further explorations of this system could fo-

cus on analyzing the stability of the optimized

trajectories. Particularly, the system loses a lot

of controllability whenever θ is near ±π/2, and

it would be valuable to explore to what extent

this can be avoided and controlled.

Source code, if helpful for eval-

uating this project, is available at

http://mit.edu/loganw/Public/6.832/.

References

[1] Joshua G. Graver and Naomi Ehrich

Leonard. Underwater glider dynamics and

control. 12th International Symposium on

Unmanned Untethered Submersible Technol-

ogy, 2001.

6

